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Executive Summary

The goal of this report is to offer the electric utility company innovative power plans
based on the analysis and offer business recommendations to increase its revenue. K-
Means clustering and cluster distance performance analysis yielded 3 clusters,
comprising of high, mid, and low power usage groups. The largest cluster was the low
power usage group. The report recommends that geographical data on the highest
power usage group be used to market referral incentives in the identified area to attract
more customers from high power usage area.
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BUSINESS UNDERSTANDING

HOW THE BUSINESS WORKS

Every state has a Public Utility Commissions (PUC) that regulates how much the power
companies can charge customers and what their profit margin or Return on Equity (ROE) can be
[2], so that utility companies can be held in check to ensure that the public can affordably and
reliably access a basic modern necessity like electric power. So, electric utility companies offer
a variety of pricing plans to aftract as many customers as possible in a competitive market.
Pricing plans include: fixed-rate plans (multi-year/12-month/short term), variable-rate plans,
indexed rate plans, flat-rate plans, fime-of-use plans, and others [1]. Pricing can be adjusted
based on terms of the contract, the local distribution grid, and competitors’ offers. In order for
power companies to maximize revenue within the regulatory bounds, pricing determinations
must be informed with intelligent analytics to balance the demands of both the consumers and
the provider.

ASSUMPTIONS

This report is premised on the basic assumption that the electric utility company for which this
datais applicable, is not the sole provider of power in this region and is engaged in competition
with competitor power providers.

Since power companies are regulated by PUC [2], this report will adopt the assumption that the
best model to secure revenue increase is to retain the greatest number of customers in the
service region, and to do so with aftractive pricing options. It is outside the scope of this report
to consider other revenue increasing options such as investments, production cost control and
leveraging alternative energy.

The goal of this report is to offer the electric utility company innovative power plans based on
the analysis and offer business recommendations to increase its revenue.

DATA UNDERSTANDING

The Household Power Consumption data set contains measurements of household power
consumptions over a specific, but unknown time period. There are 8 regular aftributes and 2,077
examples (rows), where each example row is a measurement from a single household. All
values are numerical data types, but 3 attributes are integer while the rest are real.

While the meta data shows that there are no missing values, a number of attfributes such as Sub-
metering_1, Sub_metering_2, and Sub_metering_3 show that a significant number of examples
have zero as the recorded value (see figure 2). With no time dimension in the data set
aftributes, it is not possible to determine if the zero values correspond to certain time dimensions
in which there was no power usage with the associated equipment, or if the zero values
represent households that do not have a submeter installed to measure that particular
equipment, or if a zero value is indeed a valid measurement for that attrioute. Only 10 of 2,077
examples have a zero value recorded for all 3 submetering attributes. Since cluster analysis is
sensitive to outliers, we must determine the course of action for examples with zero values.



A Filter Examples operator is employed in RapidMiner to see how many zero values exist (see
figure 3 - 6). Sub_metering_3 attribute had 1141 rows with zero values. Sub_metering_2 had 1666
rows with zero values. Sub_metering_1 had 1974 rows with zero values. So, examples with zero
values for the sub-metering aftributes make up a significant portion of the data set and it does
not appear to be a negligible or outlier value.

ATTRIBUTE INFORMATION

I

Global_apparent_power global_active_power + global_reactive_power
2 Global_active_power household global minute-averaged active power (in kW)
3 Global_reactive_power household global minute-averaged reactive power (in kW)
4  Voltage minute-averaged voltage (in volf)
5 Clobal_intensity household global minute-averaged current intensity (in amp)
6 Sub_metering_1 energy sub-metering No. 1 (in watt-hour of active energy).

It corresponds fo the kitchen, containing mainly a dishwasher, an
oven and a microwave (hot plates are not electric but gas powered).

7 Sub_metering_2 energy sub-metering No. 2 (in watt-hour of active energy).
It corresponds o the laundry room, containing a washing-machine, a
tumble-drier, a refrigerator and a light.

8 Sub_metering_2 energy sub-metering No. 3 (in watt-hour of active energy).
It corresponds to an electric water-heater and an air-conditioner.

ATTRIBUTE EXPLANATION

1. Apparent power is the sum/combination of active and reactive power, or the total power in
an AC circuit [4].

2. Active power is the power actually consumed in an AC circuit and is measured in kilowatts [3].

3. Reactive power is the power that moves back and forth in the circuit and represents the
energy that is stored then released in the form of magnetic/electrostatic field [3, 4].

4. Voltage is the measure of the pressure applied to electrons to make them move and
measures the strength of the current in a circuit [5].

5. Current intensity is the magnitude of an electric current measured by the quantity of
electricity crossing a specified area per unit time [6].

6. Submetering is typically used in mulfi-tenant residences like apartments, condominiums,
fownhomes, and student housing. However, submetering can also be installed to enable
users fo monitor electrical consumption of individual equipment in a building [7].
Submetering for individual equipment may not be found in all unattached residences.
Various states have differing regulations on the use of submetering to monitor individual
equipment [8].



Figure 1. Descriptive statistics overview of raw data set
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DATA ASSUMPTIONS

Measurements in the data set are collected from regions within the service area of the
power company.

Measurements are in “minute-averaged” units, so measurements are recorded every
minute.

Voltage, Global_intensity, and Global_reactive-power do noft reflect on customer’s
power bills that are charged based on the household’s actual consumption.

Since power bills are based on power consumption measurements in kilowatt hours, the
aftributes most relevant to this analysis will be those that report kilowatt hours of active
power, such as Global_active_power and Sub-metering 1, 2, 3.

Since zero values make up a significant portion of the sub_metering attributes, those
values are not outliers.

The higher the value of kWh (kilowatt per hour) in the attributes, the greater the revenue
for the power company.



Figure 2. Histogram showing Sub_metering_1, 2, 3 with many zero values
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Figure 3. PowerBI histograms of Sub_metering_1, 2, 3 with many zero values
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Figure 4. Filter Examples operator to show rows with non-zero values for Sub-metering_1
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Figure 5. Filter Example Set shows only 103 examples remaining with non-zero Sub_metering_1, or
1974 zero values
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Figure 6. Filter Example Set shows 411 examples remaining with non-zero Sub_metering_2, or 1666
zero values
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Figure 7. Filter Example Set shows 936 examples remaining with non-zero Sub_metering_3, or 1141
zero values
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Figure 8. PowerBl counts of zero values for Sub_metering_1, 2, 3
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The k-Means clustering does accept both numeric and polynominal, but distance measures are
more effective with numeric. Household Power Consumption data set is already in numerical
data type.

Data Type Transformation: Using RapidMiner operator Normalize, all atftributes have been
normalized with the resulting standard deviation adjusted to 1. Normalization operator was
applied because 3 attributes in particular had standard deviations beyond +3. Two of those
afttributes (Sub-metering 1 and 3) are deemed essential to the analysis, and since clustering
analysis is sensitive to extreme outlier values, standard deviations like 8.716 (see figure 8) required
normalization.

Figure 9. RapidMiner Process to normalize data
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Figure 10. RapidMiner Result with standard deviations beyond +3 before Normalization
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Figure 11. RapidMiner Result with standard deviations after Normalization
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Data Preparation of Missing Values: No missing values were found in the data set. Zero values

>
Examples: 2,077 Special Aftributes: 0 Regular Attributes: 8

for Sub-metering 1, 2, 3 attributes were left in the data set as is, because the count of zero values
were too numerous/significant to justify removing them from the analysis.

Data Preparation of Inconsistent Values: Zero values in Sub_metering 1, 2, 3 are logically

inconsistent, since any household that has active power usage would reasonably be expected

to also have power usage in the kitchen, refrigerator and water heater measured by

Sub_metering 1, 2, 3. However, without more information on the particular data set, this report

resumes analysis based on the assumptions aforementioned. These zero values will remain in the
data set as per the discussion pertaining to these zero values in the preceding sections.



MODELING

The iterative process of generating clusters using k-Means involves specifying a k number of
clusters and assigning data points to the nearest centroid and repeating the process unfil the
Sum of Squared Errors (SSE) is minimized.

K-MEANS

First, the k-Means operator in RapidMiner is used generate the initial random centroid or center
point on the normalized data set. Value of k is set to 3 for this iteration. Squared Euclidean
Distance is selected for proximity measure of the data points.

Figure 12. RapidMiner k-Means Clustering operator process
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Figure 13. RapidMiner Result cluster description with k =3
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Figure 14. RapidMiner Result cluster graph with k =3
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Figure15. RapidMiner Result centroid table with k =3
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Figure 16. RapidMiner Result cluster plot with k = 3
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Next, the RapidMiner Cluster Distance Performance operator is deployed to evaluate the
effectiveness of the clustering groups using SSE and the Davies-Bouldin index. The Performance

operator measures the average cluster distance and the Davies-Bouldin index. Large

separations between centroids indicates well-separated clusters with the data set data set

divided neatly and is desirable. Low Davies-Bouldin index and low average-within-centroid

distances indicate better/more cohesive clusters, so low numbers are desirable.

Figure 17. RapidMiner Process with Cluster Distance Performance operator
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Figure 18. RapidMiner Result of Cluster Distance Performance with k =3
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EVALUATION OF FINDINGS

SUMMARY OF FINDINGS

Best k is 3

After multiple iterations of clustering with k values from 2 to 6, and an examination of their
respective Performance vectors, this report finds that 3 clusters can best represent different
groups of customers from this Household Power Consumption data set. Of the various k values,
the average-within-centroid distance and Davies Bouldin index was the lowest with 3 clusters.
Moreover, 3 clusters is a logical division to categorize customers into 1) high power usage group,
2) mid power usage group, and 3) low power usage group.

Cluster_0: Low power usage group (1548 of 2077 item:s)

Of the 3 clusters, cluster_0 has the lowest Global_apparent_power, Global_active_power,
Global_reactive_power, Global_intensity, Sub_metering_1 and Sub-metering_3. However,
custer_0 has the highest for Voltage and is in the middle for Sub_metering_2.

Cluster_1: Mid power usage group (480 of 2077 items)

Of the 3 clusters, cluster_1 holds the middle in Global_apparent_power, Global_active_power,
Global_reactive_power, Voltage, Global_intensity, and Sulbb_metering_1. However, cluster_1 has
the highest usage in Sub_metering_3, which measures electric water heater and air conditioner.
Cluster_1 has the lowest usage in Sub_metering_2, which measures laundry room, refrigerator
and light.

Cluster_2: High power usage group (49 of 2077 items)

Of the 3 clusters, cluster_2 has the highest Global_apparent_power, Global_active_power,
Global_reactive_power, Global_intensity, Sub_metering_1, and Sub_metering_2. However,
cluster_2 has the lowest Voltage and is in the middle for Sub_metering_3.



Figure 19. Cenftroid table with lowest and highest power usage
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OBSERVATIONS ON USAGE

The lowest usage group, cluster_0, and the highest usage group, cluster_2 has an
interesting inverse relationship in Voltage. That is, the highest voltage has the lowest
usage in most of the attribute categories, while the lowest voltage has the highest usage
in most of the afttributes (see figure 19).

When Sub_metering_1 (which measures the kitchen, containing mainly a dishwasher, an
oven and a microwave) shows low usage, then overall power usage also appears to be
low. Inversely, when Sub_metering_1 had high usage, the overall power usage also
appeared to be high (see figure 19).

The lowest power user group had the lowest usage of Sub-metering_1 (kitchen) and
Sub_metering_3 (water heater, air conditioner), but not the lowest Sub_metering_2,
which measures laundry room, containing a washing-machine, a tumble-drier, a
refrigerator and a light (see figure 20).

The highest power user group had the highest usage in Sub-metering_1 (kitchen) and
Sub_metering_2 (laundry room, refrigerator, light), but not the highest in Sub_metering_3,
which measures electric water heater and air conditioner (see figure 20).

Figure 20. Sub_metering usage summary by cluster group

Power User Sub_metering_1 Sub_metering_2 Sub_metering_3
Group Kitchen Laundry Rm, Refrigerator Water Heater, AC
Low user Lowest Lowest
cluster_0

Mid user Lowest Highest
Cluster-1

High user Highest Highest

cluster_2



o The largest number of examples or items fell into the low power usage cluster, with 1548
of 2077 items in cluster_0.

e The smallest number of examples or items fell into the high power usage cluster, with 49
itfems in cluster_2.

Note: Above bullet points are mere observations on the cluster groups and not infended to
draw correlations or associations, which would require respective data modeling and
analysis.

BUSINES RECOMMENDATIONS

Since power companies are regulated by PUC with regard to the charge rate and profit
margins, the business assumption on which this analysis was built is that attracting more
customers is the best means to create more revenue. In order to attract more customers,
additional information is needed to further augment this analysis to yield better informed
recommendations.

For instance, for the highest user group (cluster_2), this report recommends that the
geographical information for those users be considered together to identify a region with the
greatest density of high power users and offer referral incentives to attract more customers from
the region with the greatest density of high power users.

For the low power user group (cluster_0), this report recommends that a fime-of-usage attribute
be considered to identify both time of day (short tferm) and also peak power usage seasons
(long term), and offer prepaid plans prior to peak power usage seasons or offer multiple fime-of-
day variable plans to aftract more customers.

Also, this report recommends the company to obtain information on competitor power
companies rates and plans, to offer price matching incentives to attract new customers.
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