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Executive Summary

The goal of this report is to provide insight for an upscale restaurant manager to predict wine quality
based on a number of attributes affecting wine quality. Based on a decision tree analysis, the best
attributes are total sulfur dioxide, fixed acidity, chlorides, and sulphates. The model predicted 3 good to 9

excellent wines. However, the training data set does not contain enough examples in the good and
excellent category to yield a sound prediction, so the report recommends acquiring more relevant

training data for better prediction.
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BUSINESS UNDERSTANDING

An upscale restaurant is interested in identifying wines of good and excellent quality based on a number of

attributes. The goal of this report is to provide a list of wines that are predicted to be of good and excellent

quality.

DATA UNDERSTANDING

The wine quality data set is divided into WineQuality_Training data set and WineQuality_Scoring data set for

decision tree prediction analysis. The WineQuality_Training data set contains 540 examples and 12 attributes,

while the WineQuality_Scoring data set contains 1,059 examples and all attributes except the quality attribute,

which will be the label or predictor attribute.

ATTRIBUTE INFORMATION

Attribute

quality (training set)
winelD (scoring set)
fixed acidity

volatile acidity

citric acid

residual sugar

chlorides

free sulfur dioxide

total sulfur dioxide

density

pH

sulphates

alcohol

Description [1]

wine quality (mehh, medium, good, excellent)

ID number for each wine in scoring data

most acids involved with wine or fixed or nonvolatile (do not evaporate readily)

the amount of acetic acid in wine, which at too high of levels can lead to an unpleasant,
vinegar taste

found in small quantities, citric acid can add 'freshness' and flavor to wines

the amount of sugar remaining after fermentation stops; greater than 45 grams/liter
are considered sweet

the amount of salt in the wine

the free form of SO2 exists in equilibrium between molecular SO2 (as a dissolved gas)
and bisulfite ion; it prevents microbial growth and the oxidation of wine

amount of free and bound forms of S02; in low concentrations, mostly undetectable in
wine, but at 50 ppm, SO2 becomes evident in the nose and taste of wine

the density of water is close to that of water depending on the percent alcohol and
sugar content

describes how acidic or basic a wine is on a scale from 0 (very acidic) to 14 (very basic);
most wines are between 3-4 on the pH scale

a wine additive which can contribute to sulfur dioxide gas (502) levels, which acts as an
antimicrobial and antioxidant

the percent alcohol content of the wine



Figure 1. Descriptive statistics of Training data set
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Figure 2. Descriptive statistics of Scoring data set
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Figure 3. Power Bl view of training data
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Count of quality in training set

mehh Medium good

Avr attribute values per quality in training set

quality Avr of total sulfur dioxide Avr of fixed acidity Avr of chlorides Avr of sulphates  Avr of volatile acidity Avr of residual sugar  Avr of citric acid Avr of density Avr of alcohol  Avr of free sulfur dioxide ~ Avr of pH

Excellent 28.78 9.54 0.07 0.77 0.42 3.18 047 1.00 11.84 8.56 3.21
good 36.51 9.63 0.08 0.80 0.45 2.83 o4 1.00 1.27 12.78 3.29
Medium 6 8.30 0.09 0.68 0.54 2.56 0.28 1.00 10.16 16.26 331
mehh 36.24 T.73 011 0.66 0.73 239 0.21 1.00 9.84 13.82 3.37
Total 48.57 8.44 0.09 0.69 053 2.59 0.29 1.00 10.29 15.70 3.31

Figure 3 visualization of the training data shows that 85% of the examples (459 examples) in training are of
medium quality and only 1.67% (9 examples) are of excellent quality and only 10.19% (55 examples) are of good
quality. The matrix table in Figure 3 shows the average value per attribute for each of the 4 qualities in addition to
the overall/total average value per attribute.

DATA PREPARATION

Data Type Transformation: At data import of training set, the quality attribute was designated as the label (see
figure 1). No transformation to data types was needed. At data import of the scoring set, the winelD attribute was
designated as ID using the Set Role operator (see figure 4), and no transformation of data types was needed.

Data Preparation of Missing Values: No missing values were found in the data set, and decision trees are not
sensitive to missing values.

Decision tree involves minimal data preparation because it is not sensitive to missing values or outliers.

MODELING

The decision tree modeling process will involve running the decision tree operator on the training set, then running
the Apply Model operator by connecting the model to the scoring set and iterate adjusting the parameters until an
optimal decision tree results.

STEPS

First, the Decision Tree operator is added to the training set with parameters at default setting.

Second, the Apply Model operator is added after the Decision Tree operator and unlabeled examples from the
scoring set are connected to apply the model to the scoring set.

Next, the process can be run repeatedly at different parameters to generate the decision tree (see figure 4, 7, 10).

RESULTS

The following figures show three iterations of the decision tree model runs with parameters adjusted.



Figure 4. RapidMiner decision tree process with parameter for first iteration
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Figure 5. Decision Tree showing the best predictor at top for first iteration
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Figure 6. Results showing prediction and confidence for first iteration

H B H v D v . Design Turbo Prep Auto Model Pl anstudio =
Result History | A ExampleSet (Apply Model) I . Tree (Decision Tree)
m QOpenin .|_‘| Turbo Prep ﬁ Auto Model Filter (1,059 /1,059 examples). | all v
Data
Row.. winelD pi i ity) ) volatile acidity  citi
1 1 Medium 0.858 0.028 0.097 0.017 7.400 0.700 o A
—=
iz 2 2 Medium 0.858 0.028 0.097 0.017 7.800 0.880 0
Statistics 3 3 Medium 0.858 0.028 0.097 0.017 7.800 0.760 00
4 4 Medium 0.858 0.028 0.097 0.017 11.200 0.280 05
E 5 5 Medium 0.858 0.028 0.097 0.017 7.400 0.700 0
6 6 Medium 0.858 0.028 0.097 0.017 7.400 0.660 ]
Charts
7 7 Medium 0.858 0.028 0.097 0.017 7.900 0.600 0.0
’ 8 8 Medium 0.858 0.028 0.097 0.017 7.300 0.650 0
9 9 Medium 0.858 0.028 0.097 0.017 7.800 0.580 0.0
Advanced
Charls 10 10 WMedium 0.858 0.028 0.097 0.017 7.500 0500 03
ah 1" Medium 0.858 0.028 0.097 0.017 6.700 0.580 0.0
12 12 Medium 0.858 0.028 0.097 0.017 7.500 0.500 03
Annotations 13 13 Medium 0.858 0.028 0.097 0.017 5.600 0615 0
14 14 Medium 0.858 0.028 0.097 0.017 7.800 0.610 02
15 15 Medium 0.858 0.028 0.097 0.017 8.900 0.620 0.1
16 16 Medium 0.858 0.028 0.097 0.017 8.900 0.620 0.1
17 7 Medium 0.858 0.028 0.097 0.017 8.500 0.280 05
18 18 Medium 0.858 0.028 0.097 0.017 8.100 0.560 02
19 19 Medium 0.858 0.028 0.097 0.017 7.400 0.590 0.0
20 20 Medium 0.858 0.028 0.097 0.017 7.900 0.320 05
21 21 Medium 0.858 0.028 0.097 0.017 8.900 0.220 04
22 22 Medium 0.858 0.028 0.097 0.017 7.600 0.390 03
23 23 Medium 0.858 0.028 0.097 0.017 7.800 0.430 02
v
< 1} >
ExampleSet (1,059 examples, 6 special attributes, 11 regular attributes)
Figure 7. RapidMiner decision tree process with new parameter for second iteration
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Figure 8. Decision Tree showing the best predictor at top for second iteration
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Figure 10. RapidMiner decision tree process with new parameter for third iteration
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Figure 12. Results showing prediction and confidence for third iteration
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EVALUATION oF FINDINGS

In the first iteration (figure 4, 5, 6), confidence was set to 0.1 and minimal gain at 0.19. This yielded a simple
decision tree with the best predictor being total sulfur dioxide, followed by fixed acidity. When total sulfur dioxide
was greater than 9.5, and fixed acidity was greater than 14.5, there were 3 examples predicted to be of good
quality, and when fixed acidity was less than or equal to 14.5, there were 52 good and 9 excellent predicted.

In the second iteration (figure 7, 8, 9), confidence was raised to 0.25 and minimal gain to 0.18. So, this yielded a
decision tree with more nodes than the first iteration, with total sulfur dioxide still being the top/best predictor,
followed by fixed acidity again, then chlorides and sulfates. When total sulfur dioxide is greater than 9.5 and fixed
acidity is less than or equal to 14.5 and chlorides is less than or equal to 0.538 and sulfates is greater than 0.435,
the model predicted 52 good and 9 excellent, in addition to the 3 good predicted from the first two attributes. In
sum, the first iteration and second iteration predicted the same number of good and excellent wines, though there
were more nodes in the second iteration.

In the third iteration (figure 10, 11, 12), confidence remained at 0.25 and minimal gain was set to 0.17. This
yielded a decision tree with more nodes; total sulfur dioxide was the top/best predictor, followed by fixed acidity,
then chlorides and sulfates, and then volatile acidity at the end. While the third iteration brought into account
volatile acidity, which may be an important factor affecting wine quality, since levels too high can lead to an
unpleasant vinegar taste, the tree includes fixed acidity in 3 levels and can lead to confusion. However, this
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iteration predicted a total of 55 good wines in addition to the 9 excellent, which is 3 more than the other two
iterations.

Figure 12. Power Bl list of wine predictions
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BUSINES RECOMMENDATIONS

Evaluation of findings suggest that the most optimal decision tree model has total sulfur dioxide = fixed acidity >
chlorides = sulphates as the best predictor attributes to consider. A list of possible options has been provided in
the preceding section. However, the training data contains not enough examples of good and excellent wines and
an overwhelming majority of examples in the medium quality, so this is a shortcoming in accurately predicting the
wine quality in the scoring data set. This report recommends that another training data set with more examples in
the good and excellent quality and/or a more balanced training data set be obtained to rerun the model for
prediction.
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