
Kennesaw State University

Department of Information Technology

IT6733 Database Administration

Spring 2018

Dr. Ying Xie

ETL Project:

2016 Presidential Election Data Using SSIS

By

Abraham Kim

Karis Kim

2

I. Data Source Link and Description

https://data.opendatasoft.com/explore/dataset/usa-2016-presidential-election-by-

county@public/

OpenDataSoft

Contains 2016 presidential election results by county with additional demographic data

as a csv and excel file. The csv file was downloaded for this project.

https://townhall.com/election/2016/president/

Townhall.com

Contains presidential election results from 2016 by each state then by each county in

html format. The data in html source was scraped and transformed into a csv file using

Python. Data was sorted by state in Townhall, but saved by county in our csv file.

http://www2.census.gov/geo/docs/reference/codes/files/national_county.txt (from

https://www.census.gov/geo/reference/codes/cou.html)

U.S. Census Bureau

List of all states and its counties with state code, county code, FIPS code, and FIPS

classification code as a txt file. FIPS(Federal Information Processing Standard) code is

used to uniquely identify counties in the United States. The txt file was transformed

into a csv file for this project.

https://catalog.data.gov/dataset/2016-general-election-results-by-precinct-complete-

ecanvass-dataset/resource/76b36e87-aff3-47a8-86fd-9463d1551708

Data.gov

Contains 2016 general election results by each precinct. Precinct is the lowest level of

division for election, also known as voting district. Presidential election results by

precinct was extracted, but precinct data was determined to return a level of granularity

that would be too fine for the purposes of this project, and therefore omitted from ETL.

(Also, attempt to join by precinct above Data.gov source to OpenDataSoft failed,

because precinct codes and names are not unique.) So, column “race” from Data.gov

source was manually added to census destination table in SQL Server Data Tool step

37 below.

https://www.google.com/url?q=https://data.opendatasoft.com/explore/dataset/usa-2016-presidential-election-by-county@public/&sa=D&source=hangouts&ust=1524918878964000&usg=AFQjCNFNoFEuhR8kdqZktBZcwO6OhHIP7Q
https://www.google.com/url?q=https://data.opendatasoft.com/explore/dataset/usa-2016-presidential-election-by-county@public/&sa=D&source=hangouts&ust=1524918878964000&usg=AFQjCNFNoFEuhR8kdqZktBZcwO6OhHIP7Q
https://www.google.com/url?q=https://townhall.com/election/2016/president/&sa=D&source=hangouts&ust=1524918878964000&usg=AFQjCNEG2LLiZwXae-0QoknoCw7b0osL_A
https://www.google.com/url?q=http://www2.census.gov/geo/docs/reference/codes/files/national_county.txt&sa=D&source=hangouts&ust=1524918878964000&usg=AFQjCNFmRKFkOxwKds6hCG5rgDDSdbHhlg
https://www.census.gov/geo/reference/codes/cou.html
https://www.google.com/url?q=https://catalog.data.gov/dataset/2016-general-election-results-by-precinct-complete-ecanvass-dataset/resource/76b36e87-aff3-47a8-86fd-9463d1551708&sa=D&source=hangouts&ust=1524918878964000&usg=AFQjCNGFMyuQZ8Xcjdr3P5NlmlCzny7G9g
https://www.google.com/url?q=https://catalog.data.gov/dataset/2016-general-election-results-by-precinct-complete-ecanvass-dataset/resource/76b36e87-aff3-47a8-86fd-9463d1551708&sa=D&source=hangouts&ust=1524918878964000&usg=AFQjCNGFMyuQZ8Xcjdr3P5NlmlCzny7G9g

3

II. Justification of why a unified view on data from these sources is necessary

Presidential election data can provide valuable information, even after the votes have

been tallied, the winner announced and sworn into office. An accurate and

comprehensive/unified view of the election data can be used to affirm that the election

process is accountable to public audit to ensure that fair, legal measures have indeed been

upheld during the election. It is one of the cornerstones of democracy.

• OpenDataSoft source lists the USA 2016 Presidential Election by County with

over a 100 columns of demographic data in addition to election results.

• Townhall source shows 2016 USA Presidential Election results by state and

further by county and by party.

• The U.S. Census Bureau source lists all U.S. states and counties with respective

FIPS code that can be used as a unique identifier.

• Data.gov source lists the results of the 2016 USA Presidential Election as well as

other elections by precinct.

So, combining data from the Townhall source, the Census Bureau source and the

Data.gov source can yield a unified view of the 2016 Presidential Election results by

party, county and state, organized by a unique identifier, the FIPS code. Then with the

OpenDataSoft source and its rich demographic information, the 2016 election results can

be examined and analyzed with various demographic information through a query by

joining the other combined data source with OpenDataSoft.

Having just the results of the presidential election (i.e.- total votes) would not help

strategize the next election because it does not answer questions like how many males

over females, what race, economic strata or geographic regions the voters came from.

Also, not having a unique identifier like the FIPS code to ensure that there is no duplicate

data, would lower the credibility of the studies from the data.

4

III. Instructions that will allow reviewer to recreate your project

A. Data Scraping

First, scraping the data from ‘https://townhall.com/election/2016/president’ with python codes.

First raw data is from html tags.

Below is Python code converting html to csv file:

import pandas as pd

import numpy as np

from bs4 import BeautifulSoup

import requests

Townhall data scraping

5

each page has a summary table that rolls up results at the state level

get rid of it

def cond(x):

 if x:

 return x.startswith("table ec-table") and not "table ec-table ec-table-summary" in x

 else:

 return False

list of state abbreviations

states = ['AL','AK','AZ','AR','CA','CO','CT','DC','DE','FL','GA','HI','ID','IL','IN',\

 'IA','KS','KY','LA','ME','MD','MA','MI','MN','MS','MO','MT','NE','NV','NH',\

 'NJ','NM','NY','NC','ND','OH','OK','OR','PA','RI','SC','SD','TN','TX','UT',\

 'VT','VA','WA','WV','WI','WY']

headers for csv export

data = [['state_abbr', 'county_name', 'party', 'votes_total']]

loop through each state's web page http://townhall.com/election/2016/president/%s/county,

where %s is the state abbr

for state in states:

 #r = req.urlopen('http://townhall.com/election/2016/president/' + state + '/county')

 page = requests.get('https://townhall.com/election/2016/president/' + state + '/county')

 soup = BeautifulSoup(page.text, 'html.parser')

 # loop through each <table> tag with .ec-table class

 tables = soup.findAll('table', attrs={'class':cond})

6

 for table in tables:

 if table.findParent("table") is None:

 table_body = table.find('tbody')

 rows = table_body.find_all('tr')

 for row in rows:

 cols = row.find_all('td')

 # first tbody tr has four td

 if len(cols) == 4:

 # strip text from each td

 divs = cols[0].find_all('div')

 county = divs[0].text.strip()

 party = cols[1]['class'][0]

 total_votes = int(cols[2].text.strip().replace(',','').replace('-','0'))

 # all other tbody tr have three td

 else:

 party = cols[1]['class'][0]

 total_votes = int(cols[1].text.strip().replace(',','').replace('-','0'))

 #combine each row's results

 rowData = [state,county,party,total_votes]

 data.append(rowData)

townhall = pd.DataFrame(data) # throw results in dataframe

new_header = townhall.iloc[0] #grab the first row for the header

townhall = townhall[1:] #take the data less the header row

townhall.columns = new_header #set the header row as the df header

townhall['votes_total'] = townhall['votes_total'].astype('float64')

7

print(townhall.shape[0])

townhall.head()

print(townhall.loc[townhall['state_abbr'] =='DC', 'county_name'])

print(townhall.loc[townhall['county_name'] == 'Sainte Genevieve', 'county_name'])

print(townhall.loc[townhall['county_name'] == 'Oglala Lakota', 'county_name'])

fix townhall county name for Washington DC, Sainte Genevieve, MO, Oglala, SD

townhall.loc[townhall['state_abbr'] =='DC', 'county_name'] = 'District of Columbia'

townhall.loc[townhall['county_name'] == 'Sainte Genevieve', 'county_name'] = 'Ste. Genevieve County'

townhall.loc[townhall['county_name'] == 'Oglala Lakota', 'county_name'] = 'Oglala'

print(townhall[(townhall['county_name'] == 'District of Columbia') |\

 (townhall['county_name'] == 'Ste. Genevieve County') |\

 (townhall['county_name'] == 'Oglala')])

change 'Co.' to 'County' in county_name to match census county name

townhall['county_name'] = townhall['county_name'].apply(lambda x: x.replace('Co.','County').strip())

print(townhall[(townhall['state_abbr'] == 'NV') & (townhall['county_name'] == 'Carson City')])

combine state and county names

#townhall['combined'] = townhall['state_abbr'] + townhall['county_name'].apply(lambda x: x.replace('

','').lower())

print(townhall[(townhall['state_abbr'] == 'NV') & (townhall['county_name'] == 'Carson City')])

print(townhall.shape)

townhall.head()

8

send to csv files

townhall.to_csv('data/2016_presidential_election/etl_townhall.csv',sep=',',index=False)

Result:

9

For Census data, scraping the data from ‘https://www.census.gov/geo/reference/codes/cou.html’ with

python codes.

10

Python codes:

Census data scraping

county_fips data from https://www.census.gov/geo/reference/codes/cou.html

census =

pd.read_csv('http://www2.census.gov/geo/docs/reference/codes/files/national_county.txt',sep=',',head

er=None, dtype=str)

census.columns = ['state_abbr', 'state_fips', 'county_fips', 'county_name', 'fips_class_code']

print(census.shape)

census.head()

view by state

ak_counties = census[(census['state_abbr'] == 'AK')].shape[0]

print(ak_counties)

census[(census['state_abbr'] == 'AK')]

11

change Shannon County, SD to Oglala County, SD

http://rapidcityjournal.com/news/local/it-s-official-oglala-lakota-county-replaces-shannon-county-

name/article_ac5c2369-3fea-5f94-9898-b007b7ddf22c.html

townhall.loc[townhall['county_name'] == 'Sainte Genevieve', 'county_name'] = 'Ste. Genevieve County'

census.loc[(census['county_name'] == 'Shannon County') & (census['state_abbr'] == 'SD'),

'county_name'] = 'Oglala County'

census[(census['state_abbr'] == 'SD')]

state of Alaska reports results at the precinct and state level; no county level data available

report results as the states level;

ugly fix to get townhall results and census counties to work together

future plan: roll up precinct-level results to the county level

census.loc[(census['state_abbr'] == 'AK'),'county_name'] = 'Alaska'

change county_name values in townhall data to match 'county_name' values for C7 fips class code

cities

get and transform C7 city names

cities = (census['state_abbr'][(census['fips_class_code'] == 'C7')] +

census['county_name'][(census['fips_class_code'] == 'C7')]\

 .apply(lambda x: x.replace('city','').replace(' ','').lower()))

cities

combine state and county names

townhall['combined'] = townhall['state_abbr'] + townhall['county_name'].apply(lambda x: x.replace('

','').lower())

loop through 'combined' column and compare to cities series to add 'city' to H1 fips class code to

townhall data

for i, row in cities.iteritems():

 if row != 'NVcarsoncity':

12

 townhall.loc[townhall['combined'] == row, 'combined'] = row + 'city'

print(townhall[(townhall['combined'] == 'NVcarsoncity')])

remove 'county' from 'combined' column of C7 fips class code counties in townhall

townhall['combined'] = townhall['combined'].str.replace('county','')

print(townhall[(townhall['county_name'] == 'Oglala')])

return sum of votes by state and county

townhall['total_votes'] = townhall['votes_total'].groupby(townhall['combined']).transform('sum')

townhall_counties = townhall.drop('votes_total',axis=1)

view dataset by selected state

print(townhall_counties[(townhall_counties['state_abbr'] == 'NV') & (townhall_counties['county_name']

== 'Carson City')])

census['county_name'] = census['county_name'].apply(lambda x:

x.replace('County','').replace('Parish','').replace(' ',''))

print(census[(census['state_abbr'] == 'NV') & (census['county_name'] == 'Carson City')])

census.head()

census['fips'] = census['state_fips'] + census['county_fips']

print(census.head())

send to csv files

#townhall.to_csv('data/2016_presidential_election/etl_townhall.csv',sep=',',index=False)

census.to_csv('data/2016_presidential_election/etl_census.csv',sep=',',index=False)

Result:

13

14

For Opendatasoft data, scraping the data from ‘https://data.opendatasoft.com/explore/dataset/usa-

2016-presidential-election-by-county@public/’ with python codes.

Python Codes:

Datagov data scraping

datagov = pd.read_csv('data/2016_presidential_election/2016_General_datagov_president.csv', sep=',',

dtype=str)

print(datagov.shape)

datagov.tail(5)

datagov_president = datagov.loc[(datagov['Race'] == 'US President & Vice President')]

print(datagov_president.shape)

datagov_president.head()

15

combined['Race'] = 'US President & Vice President'

combined.head()

datagov_president to csv

datagov_president.to_csv('data/2016_presidential_election/etl_datagov.csv',sep=',', index=False)

Result:

16

For Opendatasoft data, scraping the data from ‘https://catalog.data.gov/dataset/2016-general-election-

results-by-precinct-complete-ecanvass-dataset/resource/76b36e87-aff3-47a8-86fd-9463d1551708’ with

python codes.

17

Extract only ‘US President & Vice President’ data from the dataset with Python.

Python Codes:

Datagov data scraping

opendata = pd.read_csv('data/2016_presidential_election/2016-presidential-election-by-county-

opendata.csv', sep=';', dtype=str)

print(opendata.shape)

opendata.head(5)

18

lst_col_opendata = opendata.columns

print(lst_col_opendata.values)

lst_mask_columns = ['Democrats 08 (Votes)', 'Democrats 12 (Votes)', 'Republicans 08 (Votes)',

'Republicans 12 (Votes)',

'Republicans 2012', 'Republicans 2008', 'Democrats 2012', 'Democrats 2008',

'total08', 'total12', 'other08', 'other12', 'other12_frac','other08_frac',

'rep12_frac2', 'rep08_frac2', 'dem12_frac2', 'dem08_frac2']

df.loc[:, df.columns != 'b']

#opendata_extract = opendata[opendata.columns.difference(lst_mask_columns)]

opendata_extract = opendata.drop(opendata[(lst_mask_columns)], axis=1)

print(opendata_extract.shape)

opendata_extract.head()

Cleansing columns name

#opendata_extract.columns = opendata_extract.columns.map(lambda x: int(x[1:]))

opendata_extract.columns = opendata_extract.columns.map(lambda x: \

 x.replace('(','').replace(' ','_').replace(')','').replace(',','_').replace("'s",'').replace('.','_'))

print(opendata_extract.columns.values)

Reformat values for column a using an unnamed lambda function

opendata_extract['County'] = opendata_extract['County'].apply(lambda x: x.split(',')[0])

opendata_extract.head()

opendata_extract = opendata_extract.drop('statecode_prev', axis=1)

opendata_extract[opendata_extract['ST'] == 'GA']

len(combined[combined['state_abbr'] == 'GA'].fips.unique())

opendata_extract.to_csv('data/2016_presidential_election/etl_opendata.csv',sep=',', index=False)

19

Result:

Attempt to join by precinct above Data.gov source to OpenDataSoft failed, because precinct

codes and names are not unique. So, column “race” was added to census destination table in SQL

Server Data Tool.

20

B. Build & Deploy

1. In SQL Server Management Studio, create a DB container for the ETL project.

2. In SQL Server Data Tool 2015, create a new project.

21

3. Create .dtsx files for our data sources:

Under SSIS Packages on the right, rename project. In Control Flow tab, mouse right click on

design surface in the middle, select New Connection, then in Add SSIS Connection Manager,

select FLATFILE connection manager type and Add.

4. In the next window, click Browse, then in the next Open file window select/open the folder with

my data source files, select CSV files in lower right to see those files. For this, select

OpenData.csv, then click Open.

22

Click Advanced, verify columns in my OpenDataSoft CSV file, then click OK.

Next screenshot to check that Flat File Connection Manager created.

23

5. Repeat steps in 3, but create OLEDB connection manager.

In Control Flow tab design surface in the middle, mouse right click, click New Connection, select

OLEDB connection manager type and Add.

24

In the next screen, create connection to my DB from step 1.

Next screenshot bottom of page to check job done.

6. In Control Flow tab, click drag Data Flow Task, rename it.

25

7. Go to Data Flow tab, click drag Flat File source, rename it.

8. Double click Extract Open Data Source, then in next window, check columns, click OK.

9. In same Data Flow tab, under Other Destinations, click drag OLE DB Destinations, rename it,

double click it to get OLE DB Destination Editor, click Connection Manager, make sure OLE DB

connection manager field shows my DB created in step 1.

26

10. Click New next to Name of the table of the view, rename of OLE DB Destination table to mine,

click OK, then click Mappings.

In Mappings, verify that columns of source and destination match up, click OK. (no screenshot)

27

11. Then click Start. But, oops, our first file load resulted in an error:

12. Our Error Message:

28

We determined that column "statecode_prev" was not necessary, so we will drop that column.

13. Delete OLE DB Destination. Go to SQL Server Management Studio, delete table

dbo.ElectionDemographics.

Error: 0xC02020A1 at Extract Open Data Soft, Extract Open Data Source [2]: Data conversion failed.

The data conversion for column "statecode_prev" returned status value 4 and status text "Text was

truncated or one or more characters had no match in the target code page.".

Error: 0xC020902A at Extract Open Data Soft, Extract Open Data Source [2]: The "Extract Open Data

Source.Outputs[Flat File Source Output].Columns[statecode_prev]" failed because truncation

occurred, and the truncation row disposition on "Extract Open Data Source.Outputs[Flat File Source

Output].Columns[statecode_prev]" specifies failure on truncation. A truncation error occurred on

the specified object of the specified component.

Error: 0xC0202092 at Extract Open Data Soft, Extract Open Data Source [2]: An error occurred while

processing file "D:\Users\tkim25\Documents\abe_exam\etl_opendata.csv" on data row 2.

Error: 0xC0047038 at Extract Open Data Soft, SSIS.Pipeline: SSIS Error Code

DTS_E_PRIMEOUTPUTFAILED. The PrimeOutput method on Extract Open Data Source returned

error code 0xC0202092. The component returned a failure code when the pipeline engine called

PrimeOutput(). The meaning of the failure code is defined by the component, but the error is fatal

and the pipeline stopped executing. There may be error messages posted before this with more

information about the failure.

Information: 0x40043008 at Extract Open Data Soft, SSIS.Pipeline: Post Execute phase is beginning.

Information: 0x402090DD at Extract Open Data Soft, Extract Open Data Source [2]: The processing

of file "D:\Users\tkim25\Documents\abe_exam\etl_opendata.csv" has ended.

Information: 0x4004300B at Extract Open Data Soft, SSIS.Pipeline: "OLE DB Destination" wrote 0

rows.

Information: 0x40043009 at Extract Open Data Soft, SSIS.Pipeline: Cleanup phase is beginning.

Task failed: Extract Open Data Soft

Warning: 0x80019002 at opendatasoft: SSIS Warning Code

DTS_W_MAXIMUMERRORCOUNTREACHED. The Execution method succeeded, but the number of

errors raised (4) reached the maximum allowed (1); resulting in failure. This occurs when the

number of errors reaches the number specified in MaximumErrorCount. Change the

MaximumErrorCount or fix the errors.

SSIS package

"D:\Users\tkim25\Documents\abe_exam\SSIS_election_prj\SSIS_election_prj\opendatasoft.dtsx"

finished: Failure.

The program '[22788] DtsDebugHost.exe: DTS' has exited with code 0 (0x0).

29

14. Double click Extract Open Data Source to open Flat File Source Editor, click Columns, uncheck

“statecode_prev” column, click OK.

15. Re-create OLE DB Destination using step 9. In OLE DB Destination Editor window, rename

destination table (“ElectionDemographics”).

30

16. Click Start. Next screenshot to check success.

31

17. In SQL Server Management Studio, click refresh, see recreated table, run query, check results.

18. Create a new .dtsx file for next source data: Right click SSIS Packages New SSIS Package 

Rename it (“townhall” for this case).

19. Mouse on middle design space, right click  New Connections  select FLATFILE  double

click to see next screen

32

33

20. Click Advanced, verify columns in my Townhall CSV file, click OK.

Next screen to check Flat File Conncection Manager for townhall.dtsx has been created.

34

21. Repeat step 5 for OLE DB Connection Manager creation. Next screen to confirm creation.

22. Repeat step to create Data Flow Task for Townhall.

23. Repeat step to create Flat File Source for Townhall.

35

24. Click drag Script Component to add another column (state_abbr + county_name) under column

name “combined” to townhall destination table.

25. Double click Script Component, click Input Columns, check Name, review Input Column and

Output Column, click OK.

36

26. Click Script, Edit Script.

37

27. Then new window opens, under comment /* Add your code here*/ add my code:

 String combined = Row.stateabbr + Row.countyname;

 Row.combined = combined;

Then save.

28. Then click OK on previous Script Transformation Editor pop up. Check that red X disappears from

Script Component on design space.

38

29. Create OLE DB Destination, click New to rename destination table to “ElectionTownhall” and

check that newly added column shows, then OK, OK.

30. Click Start then check successful execution.

39

31. Go to SQL Server Management Studio to check that new destination table is there and run test

query to verify newly added column appears.

32. SSIS Packages  New SSIS Package  Rename as census  right click design space  select

Flat File Connection Manager

40

33. Repeat above steps to create Flat File Connection Manager, OLE DB Connection Manager, Data

Flow Task, Flat File.

34. After creating a Data Flow Task in Control Flow tab, create Flat File Source for Census.

41

35. Create a Script Component to add “combined” column.

36. Script  Edit Script

42

37. Add code at the end for three additional columns (combined, fips, race):

 String combined = Row.stateabbr + Row.countyname;

 String fips = Row.statefips = Row.countyfips;

 String race = “US Presidential & Vice President”;

 Row.combined = combined;

 Row.fips = fips;

 Row.race = race;

[NOTE: Column “race” was manually added into the Census Destination table from Data.gov

source.]

43

38. Create OLE DB Destination, rename destination table “ElectionCensus”, check mappings.

44

39. Click start, check successful execution.

45

40. Go to SQL Server Management Studio, check that new destination table is added, run test query,

check that newly added columns are there.

41. Create Script Component for Error Description.

46

47

In Script, click Edit Script, then add code, then click Build as shown on next screenshot:

48

Then create Flat File Destination to receive error description:

49

50

51

42. Repeat steps, create Get Error Description for OpenDataSoft:

52

53

54

55

56

43. ETL completed. Next test with SQL queries.

IV. Screenshots and SQL code (source code attached as separate file)

-- How many rows are there in each table?

select * from ElectionCensus; -->3235 rows

select * from ElectionTownhall; --> 14188 rows

select * from ElectionDemographics; --> 6286 rows

-- Create a view of ElectionCensus and ElectionTownhall

create view v_election as

select t.state_abbr

,t.county_name

,t.party

,t.votes_total

,s.fips

,s.state_fips

,s.county_fips

,s.fips_class_code

,s.race

from ElectionTownhall t

left outer join ElectionCensus s

on t.combined = s.combined;

57

-- How many total votes for each presidential candidate in each state?

select * from v_election;

select state_abbr

, party

, case

when party = 'DEM' THEN 'Hillary Clinton'

when party = 'GOP' THEN 'Donald Trump'

when party = 'GRN' THEN 'Jill Stein'

when party = 'LIB' THEN 'Gary Johnson'

when party = 'PEC' THEN 'Evan McMullin'

ELSE 'Others'

end candidate

, sum(cast(votes_total as numeric)) votes

from v_election

group by state_abbr, party

order by state_abbr, party;

58

-- How many votes for each party presidential candidate in each county in each state?

select state_abbr

, county_name

, party

, case

when party = 'DEM' THEN 'Hillary Clinton'

when party = 'GOP' THEN 'Donald Trump'

when party = 'GRN' THEN 'Jill Stein'

when party = 'LIB' THEN 'Gary Johnson'

when party = 'PEC' THEN 'Evan McMullin'

ELSE 'Others'

end candidate

, sum(cast(votes_total as numeric)) votes

from v_election

group by state_abbr, party, county_name

order by state_abbr, party, county_name;

59

-- What percentage of voters in each state are White/Black/Hispanic/Asian/Native-American?

select case when st = '' then 'zz'

else st

end st_ab

, county, White, Black, Hispanic, Asian, Amerindian, Other

from ElectionDemographics

order by st_ab;

60

-- What is the median earnings of voters for the major parties in each fips code?

select d.state, d.county, d.fips, d.Median_Earnings_2010,

temp.candidate, temp.votes

from ElectionDemographics d,

(select fips

, party

, case

when party = 'DEM' THEN 'Hillary Clinton'

when party = 'GOP' THEN 'Donald Trump'

--when party = 'GRN' THEN 'Jill Stein'

--when party = 'LIB' THEN 'Gary Johnson'

--when party = 'PEC' THEN 'Evan McMullin'

ELSE 'Others'

end candidate

, sum(cast(votes_total as numeric)) votes

from v_election

where party in ('DEM', 'GOP')

group by fips, party) temp

where d.fips = temp.fips;

61

V. Detailed description of each group member contribution

Member Task Description Estimated

time (min)

Abraham

Kim

Research potential topics Google search for topics with

sufficient number of separate

sources

180

Discuss/Evaluate options Narrow choices based on

relevance to project goals and

select topic

100

Downloaded two data files Download (Townhall source and

US Census source), scrape and

transform Townhall source data

from html to csv using Python

120

Practice loading into SSIS Test load xls and txt file into SQL

Server SSIS

240

Data cleansing Data cleansing of four sources

(using Python)

600

Build & deploy ETL Fix errors & debug during loading

of files

600

Run to test successful load,

capture screenshots

80

Create report Support creation of report 60

Karis

Kim

Research potential topics Google search for topics and types

of data openly available

60

Discuss/Evaluate options Narrow choices based on

relevance to project goals and

select topic

100

Find, download two

additional data sources

OpenDataSoft source and

Data.gov source as csv files

120

Prepare report template Study project deliverables, create

report template

30

Review ETL procedures

from Lab

Reference Lab 9 on SSIS

procedures

30

Build & deploy ETL Support data cleansing 30

Create DB in SQL Server and

create project in SS Data Tool

30

Load data sources in SQL Server

Data Tool 2015

600

Capture screenshots 300

Create queries to test 30

Create report Create report 360

