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Executive Summary
The goal of this report is to offer the management salary predictions, wage offer list and a projected

budget in preparation for the acquisition of a company engaged in a similar line of business. The analysis
predicts that the total weekly salary will be $594,716 with the average employee’s weekly salary being
$975. A wage offer list is provided based on average of prediction wage by Education and 1Q. However,
the model was underfit for the available data set, so this report recommends obtaining additional data
with attributes like employees’ job performance assessment, number of projects or duties assigned, and
position rank in the company to yield a better fitting linear regression model.
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BUSINESS UNDERSTANDING

Company A, for which this analysis is prepared, is acquiring Company B that is engaged in a similar line of business.
This report aims to use current salary information to predict salary requirements and offers for the Company B
employees who will be joining Company A, along with a total weekly salary budget that will help Company A
management plan and prepare for the acquisition.

This analysis and business recommendations (particularly with regard to total budget) are premised on the
assumption that all employees in Company B will be joining Company A upon acquisition, and that the data set is a
comprehensive and representative record of the employees aforementioned.

DATA UNDERSTANDING

The Wages data set contains 11 attributes, where each example/row represents a unique employee. The dataset
represents weekly hours worked per employee along with their weekly wages, in addition to several additional
information/attributes on each employee as listed below in the attribute information. All data set values are in the
data type integer.

Attribute Description
1 EmployeelD Employee ID (unique integer)
2 Wage Weekly wages in dollars
3 Hours Hours worked per week
4 1Q Employee’s 1Q
5 Educ Employee’s education in terms of number of years
6 Exper Number of years of job related experience
7 Tenure Number of years being with the current employer
8 Age Age of employee
9 Married Marital status (0 = no, 1 = yes)
10 Urban Residence status (0 = no, 1 = yes)
11 Sibs Number of siblings

The data set is divided into Wages_Training data set and Wages_Scoring data set for linear regression analysis.
The Wages_Training data set contains 320 examples and 11 attributes, while the Wages_Scoring data set contains
615 examples and all attributes except the Wage attribute, which will be the label or predictor attribute.



Figure 1. Descriptive statistics of Training data set
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Figure 2. Descriptive statistics of Scoring data set
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This report commences on the assumption that there will be a linear relationship between the dependent/target
variable (Wages) and other independent variables/attributes, and that the variables follow a normal distribution.

Another assumption is that independent variables are not highly correlated. To test the validity of this
assumption, a Correlation Matrix operator was launched in RapidMiner process. Figure 3 below shows that the
top correlation is between Experience and Age, but at 0.56, it merely showed some correlation and verified that
there are no independent attributes that are highly correlated. The next top correlation is between Education and
IQ, but here also 0.503 barely showed “some” correlation.

Figure 3. Correlation Matrix to check that attributes are not highly correlated
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Note that of all the attributes, Wage has the highest correlation coefficients with Education and then IQ, but 0.311
and 0.283 respectively does not indicate the presence of a correlation.

DATA PREPARATION

Data Type Transformation: Linear regression models use numeric data types, and since all data types in the data
set were integer (see figure 1 and 2), no data type transformation was needed.
Data Preparation of Missing Values: No missing values were found in the data set.

All data ranges for attributes in the scoring set must be within the range of those in the corresponding training set.
Comparison of the scoring and training data sets showed that for attribute 1Q, the training data set only had a
maximum of 134, while the scoring data set had values up to 145. Similarly, the attribute Tenure in training data
set has a maximum of 21, but the scoring data set has 22; the attribute Sibs in training has a maximum of 13, but
the scoring has 14.

Data Preparation for Out of Range Attributes: In RapidMiner, Filter Examples operator was used to remove those
out of range observations from the data set. In Filter Examples Parameters, click Add Filters, and in the Create
Filters window, enter the maximum values of IQ, Tenure and Sibs in from the training data set, so that all examples
less than or equal to those maximum values may be passed through to the output (see figure 4).



Figure 4. Filter Examples operator to remove observations out of range from scoring set
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Figure 5. Results showing 610 examples in scoring set after removing out of range observations
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DESIGNATE TARGET, ID ATTRIBUTE

In RapidMiner, using Set Role operator, Wage attribute will be designated as the target attribute or the label in the
training data set. In the scoring data set, the Wage attribute is omitted, so there is no need to designate Wage as
the label. However, in both the training and scoring sets, EmployeelD attribute needs to be designated as ID, so
that EmployeelD is not used in the model. A second Set Role operator is added to the scoring set for this function
(see figure 6).



Figure 6. Set Role operators to designate Wage as label, EmployeelD as id
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Figure 7. Results showing ID attribute in blue column, label attribute in green column
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MODELING

Following data preparation, the linear regression modeling process will involve running the Linear Regression

operator on the training set, then running the Apply Model operator, and the Performance (Regression) operator

to measure the performance of the linear regression model. Then the model can be deployed on the scoring set.

First, the Linear Regression operator is added to the training set. In the Parameters, feature selection is set to

none and all defaults settings are maintained (see figure 8). Setting feature selection to none will prevent

RapidMiner from removing least significant factors from the model. Checking the eliminate colinear features will



enable RapidMiner to remove factors that are linearly correlated from the modeling process

bias will enable RapidMiner to build a model with an intercept.

. Checking the use

Figure 8. RapidMiner process for Linear Regression operator to training set

D /nocal

Wages* - Studio Educational 9.1.000 @ DESKTOP-KDFHG6) o X
Eile Edit Process View Connections Cloug Settings Extensions Help
H - b - B Design Results TuboPrep  Auto Model £| msudio v
Repository Process Parameters
& Import Data © process » 0% P P uaw i . Linear Regression
. NAA feature seiection none 4
o Assigmts-BakenSa 3
R W Tra... W [ : (ression Apply Model Perf
o Assigmt5-Househo S BTN age oxlaost s - B il e eliminate colinear features
- ) EmployeelD as id qn mod) € mos wh G per )
o Newnte Yeuns c - mp d D
. d per .

o Assigmts-Wages-re., L et Nols i 1 min tolerance 005

< > T
o use bias
Operators
1 ridge
linear regression x Retrieve Wages_Sco..
ot
Modeling (4) C D
'

w P Predictive (4) Remove 1Q >134 Remove Tenure>21 Remove Sibs>13

v 9 Functions (3)
Set Role (2)

=

Filter Examples Filter Examples (2)
R e wp e wp
o ¥ i r Y

wn ) wn )

. Generalized Linear
. Linear Regression'
. Vector Linear Regres
w 7 Support Vector Machine

Employeeld as id
. Support Vector Mach

set.

Filter Examples (3)
= wp
¥

wm D

Next, the Apply Model operator is added after the Linear Regression operator to apply the model to the training

Figure 9. RapidMiner process for Apply Model operator to training set
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At this point, the process can be run to generate the following results in Figure 10. In the Results view, in the
Linear Regression tab, doubling clicking the Code column will sort the attributes according to decreasing levels of
significance. Attributes with 4 stars is highly significant, while any star below 2 should be disregarded. Figure 10
shows that Education is the most significant, followed by IQ and Married. The Description of Linear Regression
shows a list of the coefficients of the linear regression function for each attribute (see figure 11).



Figure 10. RapidMiner Result of Linear Regression on training set
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Figure 11. Linear Regression Description of coefficients per attribute and the intercept
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Before applying the Linear Regression model to the scoring set, the Performance (Regression) operator is added to
measure how good the model fits, with the squared correlation (or R2). Squared correlation values can be from
0.0 to 1.0, and better models will be closer to 1.0. Our result view shows that the squared correlation is 0.209 (see
figure 13). Low values below 0.2 generally mean that attributes in model do not explain the prediction outcome
satisfactorily [1]. However, social and behavioral science models typically do accept low values [1].

In the Performance (Regression) operator’s Parameters, squared error, correlation, and squared correlation are
selected before input and output are connected appropriately, and the process is run (see figure 12).



Figure 12. RapidMiner process for Performance (Regression) to measure linear regression performance
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The Performance Vector Description lists the measurements in one view (figure 13).

Figure 13. RapidMiner Result of Performance of Linear Regression on training set
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Now the model will be applied to the scoring set, by connecting the Apply Model operator’s unlabeled input port
with the examples from the scoring data set stream (see figure 14). The process of applying the Linear Regression
model on the scoring set will yield a data table of the example set with the prediction(Wage) column containing

the predicted wages per employee for the 610 examples in the scoring set (see figure 16).

In order to also provide the business actionable intelligence from the prediction that can help management
prepare for the acquisition, an Aggregate operator is added to the process to find the sum of the predicted wages

and the average of predicted wages per week (see figure 15).
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Figure 14. Connect Apply Model operator to examples from the scoring set
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Figure 15. Add Aggregate operator to show sum and average of prediction wages

H - - B
Repository Pracess
Qimpor.. | =~ ® Process ¢

A
Assigmid-BakerySale:
Retrieve Wages_Tra... wage as label

iy EmployeeiDasid

Assigmis-Wages - - fad
AssigmiB-Wages-redt Ul Set Role

< > = 73 mp

B

Operators "

agoregate 1 x Retrieve Wages _Sco...

-
lending (4) ~ c P
'

| Aftributes (1) L Rem

P Generation (1)
T4 Generate Aggr
Table (3)
B Grouping (1) _
2 =

Employeeld as id

& Phiot
& De-Pival
odeling (1)
 Time Series (1)
1 Feature Extraction
< i >

Filter Examples.

T

Design

Linewr Rogression
'™ mod

LY
-p
v

>134

o N p
“p
wm

v

Leverage the Wisdom of Crowds 1o gel operalor recommendations based on your process design!

Remove Tenure>21 Remove Sibs>13

Filter Examples (2)

Results Turbo Prep Auto Model P | Aiswdio v
Parameters
Wk P P4 w El| B reweome
use default aggregation

4 Connect

3
Qaareqation atributes @ |

Apply Mg
med. b
w D

x
Filtes Examples (9)
= ? o)
“p
wn

v ‘aggregation attribute aggregation functions
pradiction(wage) ¥ | sum v
prediction{Wage)| w | average v

TR A0dEny | 5, Remove Enty

RESULTS OF LINEAR REGRESSION ON SCORING SET

The following Figure 16 shows the results of the linear regression model applied on the scoring set, with the
prediction wages highlighted in the green column. The highest predicted weekly wage is $1450.02 and the lowest

predicted weekly wage is $418.64. The descriptive statistics view of the scoring set with the prediction wages

shows that the label variable follows a nice bell curve, but has a high standard deviation of 185.483 (see figure 17).

The total sum of weekly predicted wages is $594,716.11 and the average weekly predicted wages is $974.94 (see

figure 18).
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Figure 16. Results of applying Linear Regression model on scoring set yielding prediction(Wages)
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Figure 17. Results showing descriptive statistics on scoring set with prediction(Wages)
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Figure 18. Results of the aggregated weekly prediction wages and average per week
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EVALUATION ofF FINDINGS

The Linear Regression results data table (see figure 10) showed that Education and IQ were ranked at the top as
the most significant factors, with a Code rating of 4 stars and 3 stars respectively. The following figure 18 shows a

plot of Education and the target variable, prediction(Wage). Figure 19 shows a plot of 1Q and the target variable,
prediction(Wage).

Figure 18. Scatter plot of the top ranked variable Education and label Prediction(Wage)
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Figure 19. Scatter plot of the second top ranked variable /Q and label Prediction(Wage)
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The scatter plots of Prediction(Wage) with Education and IQ does show a linear pattern, but the data points are
loosely scattered around the linear regression line. In the previous section, the results of the Performance
(Regression) vectors yielded a squared correlation of 0.209 (figure 13), which may be an indication that the
attributes in this linear regression model do not explain the prediction outcomes very well, and we now see that
the linear regression line underfits the data (figure 18, 19).

The following Power Bl matrix shows Predicted(Wages) by Education and 1Q, sorted by wages from low to high
(figure 20). The matrix shows that high IQ does not necessarily yield high salary, and highest education does not
entirely correspond to the highest salary. Just as the linear regression Performance and plot line revealed above,
Education and IQ are not necessarily the best variables for wage prediction.

Figure 20. Power Bl Predicted Wage by Education and 1Q, sorted by predicted wage

W EHe = Visual tools Assigmt6 - Power Bl Desktop
“ Home View Madeling Help Farmat Data / Drill
Predicted Wage by Educ & IQ: sorted by predicted wage ]
Q a 10 1 12 13 14 15 16 17 13 . Total n

101 3891.19  1792.13 899.16 124733 918.90 1183.00 9931.71
103 881.75 4473.03 91240 2867.78 1083.17 10218.12
1w 5896.89 94943 2316.17 106271  10225.20
120 946.43 891.81 242501 1092.87 336692 114034 114364 11007.02
85 898.77 619544  1514.18 911.24 173832 11257.95
100 800.58 6893.27 738.87 §59.56 214939  11441.67
e 5031.72 1949.68  1106.31 2216.78 1353.70 11658.19
53 2684.77 7051.02  1024.57 957.01 11717.37
Ea 699.27 9256.19 1121.42 1158.66 12235.54
o 659.12 793.52 5417.52 210732 800.51 115548 1306.03 12239.50
102 5668.59 105833  2880.56 220813 1211.30 13026.90
110 542212  1058.87 1195.31 4362.63 113500 13173.93
" 1803.94 949.08 2213.10 478631 225252 127470 13279.65
i 3280.88 105093 2217.26 2109.26 331520  1309.37 13282.90
Ui 3406.02 877.10 712717  2376.47 13786.77
4 5057.59  1820.26 123139 4416.09 1366.40 13891.72
g 909.00 106943 319320 114517 3654.30 392336 13894.46
108 5358.58 2213.14 204528 3479.79  1147.44 14244.24
e 92842  2096.32 683557 321467 1447.68 14522.67
50 9729.07  1561.52 956.44 2283.09 14530.13
52 811.83 886.95 6231.90 918.51 99649  2001.03 1852.06  1062.95 14761.72
13 1093.28 6145.98 93717  1969.83  1181.84 241058  1311.50 15050.17
7 928.76 946.63 8302.21  1810.36 818.91 989.76 2077.79  1094.90 16969.31
22 1974.32 724427 886.79 283199 1809.67 2389.01  17136.05
96 798.64 1898.80 9698.37 2349.18  1753.52 2203.12 1189.79  19891.43
103 916.29 9226.26 308945  1791.98 2174.71 1171.65 241076 20781.19
o 1898.30 8504.12  2067.10 2926.09 3662.74  1025.33 129949 21383.17
109 7412.02 115724 114894 214644 597953  1189.95 365628 22690.40
S 883.27 875211 246530 283752 215319 3434.41 234150 22867.30 N
Total | 5032.64 19479.97 21901.47 230328.31 45273.42 52648.49 32535.58 102849.49 31589.78 53076.96 594716.11
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Figure 21. Power Bl interactive dashboard of prediction wages with top two variables
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Total

13026.90
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20781.19
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22690.40
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The findings of the report initially recommends that the company plan to budget for the total sum of weekly

o
Sign ir

predicted wages of $594,716.11 ($30,925,232 per annum for employee wages) and the average weekly predicted
wages of $974.94 upon acquisition. A wage offer list is provided based on average of prediction wage by

education (figure 22). A wage offer list based on average of prediction wage by IQ is also provided (figure 23).

Since the analysis revealed that the model was underfit for the available data set, this report recommends that the

business obtain more data with other attributes that may potentially have a more significant relation to the label

variable and yield a better linear regression result. Other attributes that may potentially be more helpful in making

a linear regression based prediction that is neither underfit or overfit could be data/attributes on employees’ job

performance assessment, number of projects or duties assigned, position rank in the company, and so on.
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Figure 22. Power Bl wage offer list breakdown by education based on average of prediction wage
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Figure 23. Power Bl wage offer list breakdown by IQ based on average of prediction wage
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