
Kennesaw State University

Department of Information Technology

IT5413 Software Design & Development

Fall 2017

Object-Oriented Programming

By Karis Kim

Object-Oriented Programming 2

Table of Contents

1. Introduction ... 3

2. What is Object-Oriented Programming? .. 3

2.1 Abstraction .. 3

2.2 Encapsulation .. 4

2.3 Inheritance ... 5

2.4 Polymorphism ... 6

3. How did OOP develop? .. 6

3.1 History of OOP ... 6

4. What makes OOP different? ... 8

4.1 Procedural Programming vs. OOP ... 8

5. Why does OOP reduce cost and improve software quality? .. 9

5.1 Cost Reduction .. 9

5.2 Better Software Quality ... 9

6. Concluding Remarks about OOP .. 10

7. References ... 11

Object-Oriented Programming 3

1. Introduction

Object-Oriented Programming (OOP) is pervasive in software design and

implementation, and Object-Oriented Technology is also extending its reaches in database

environments. So, what is OOP, how did OOP evolve into the dominant paradigm, how is it

different from previous procedural languages and why is it better in terms of cost and software

quality? This paper will summarize the answers to those 4 questions.

2. What is Object-Oriented Programming?

OOP is a key paradigm in today’s programming technology. In the OOP approach,

programs are grouped together in basic units called objects with their own attributes and

functions, so OOP codes are easier to understand, correct and modify. OOP languages like Java

have classes, which some refer to as a “factory” that contains “blueprints” to mass produce

objects. In a class, variables of the object are declared with the operations (methods) that the

object will perform and a set of function definitions that implements each of the operations (“A

Brief History of Object-Oriented Programming,” n.d.). There are four main concepts that define

OOP: abstraction, encapsulation, inheritance, and polymorphism.

2.1 Abstraction

One of four key characteristic concepts in OOP, abstraction is a process to simplify the

design of complex programs by representing objects with their essential features without all the

background details. Abstractions are described as “tools for describing the common structure of

similar phenomena” (Nygaard, 1986). Abstractions allow the programmer to encapsulate and

hide all but the relevant data about an object, which reduces complexity and increases efficiency

(Rouse, 2014). As summarized in a definition of abstraction by Techopedia, abstraction and the

other three key OOP concepts, encapsulation, inheritance and polymorphism, are very closely

Object-Oriented Programming 4

related, and “[a]bstraction defines an object in terms of its properties, functionality, and interface

(means of communicating with other objects),” as “[t]he state of the object is encapsulated while

the detailed data structures associated with the object are kept behind the scenes.” Figure 1

illustrates the concept of abstraction with Google Map satellite image of Oxford Circus Station in

London and three maps of the same location; the three maps illustrate abstractions in which only

relevant essential features are represented without all the background details.

Figure 1.

2.2 Encapsulation

Encapsulation is one of the main concepts of OOP, where data attributes and methods are

wrapped (or encapsulated) as a single program unit and the implementation details are hidden

Object-Oriented Programming 5

inside the class. By declaring the variables of a class private, data hiding is accomplished and

can only be accessed through the use of setter and getter methods. The hiding of

implementation details from the rest of the system is useful in preventing unauthorized access in

teams of many developers or users, and is a key aspect of OOP. Yaiser’s article about

encapsulation best summarizes the concept as:

Put simply, encapsulation is about hiding complexity. The first reason is to provide a

simplified and understandable way to use your object without the need to understand the

complexity inside. In the same way, hiding the complex functionality of your object from

the user allows anyone to use it and to find ways to reuse it in the future regardless of

their knowledge of the internal workings. The second reason for hiding complexity is to

manage change… object can change very significantly internally while the remainder of

your application can stay exactly the same (2011).

2.3 Inheritance

Inheritance is a fundamental concept of OOP language that enables software reuse and

promotes cost efficiency and software quality improvement. When creating a new class, you can

“inherit” an existing class’ members and add or modify capabilities from the existing class,

rather than having to declare completely new members. The existing class is known as the

superclass and the new class is known as the subclass, in which the inheritance is represented by

an “is-a” relationship between the subclass and its superclass. The subclass “is a” member of a

more general superclass; for example, a truck (subclass) is a vehicle (superclass). Inheritance

allows you to create multiple subclasses like Truck, Sedan, SUV, and Bus, by reusing the

properties from the superclass Vehicle that would be shared by all the subclasses, without having

to recreate them for each subclass. Inheritance is possible in OOP languages because a subclass

Object-Oriented Programming 6

object is an object of its superclass. In procedural programming, without the benefit of OOP,

inheritance would not be possible.

2.4 Polymorphism

Polymorphism is a characteristic concept of OOP languages that is closely related with

inheritance hierarchies. According to Deitel and Deitel, polymorphism “enables you to

“program in the general” rather than “program in the specific” …to write programs that process

objects that share the same superclass (either directly or indirectly) as if they’re all objects of the

superclass” (2012, p.395). With polymorphism, “subclasses of a class can define their own

unique behaviors and yet share some of the same functionality of the parent class”

(“Polymorphism,” n.d.). So, polymorphism enables a method of the superclass to be

implemented in different ways in the subclass objects. Singh (2017) illustrated this concept

using a superclass Animal with a method Sound(): For example, the Animal class method

Sound() may be implemented in subclass Cat as meow, subclass Cow as moo, and subclass Bird

as chirp by using method override. In addition to method overriding, method overloading is

another critical concept of polymorphism. Overloading is achieved when the same method can

produce various types of data.

3. How did OOP develop?

3.1 History of OOP

In the 1960s, the concept of OOP debuted in the world with a programming language for

simulations known as Simula. Simula was created in Norway by Dahl, Myhrhaug and Nygaard.

According to Weisfeld (2005), “The introduction of Simula-67 brought with it the first true

programming object, classes, and a form of inheritance; therefore, Simula is an important

Object-Oriented Programming 7

milestone in any discussion on O-O programming languages… Simula had a novel way of

presenting the object, so that each object has its own behavior and data.” Simula was a language

for simulations and object-oriented programming was better suited than procedural programming

to represent real life objects.

In the 1970s, Smalltalk, conceived by Alan Kay, was introduced to the world by Xerox

company’s Palo Alto Research Center (PARC) as what many call the first truly or pure Object-

Oriented language and “gave O-O development a certain amount of legitimacy in the

marketplace” (Weisfeld, 2005). Weisfeld states that in the programming environment of

Smalltalk, “everything is really an object that enforces the O-O paradigm. It is virtually

impossible to write a program in Smalltalk that is not O-O” (2005).

 In the 1980s, OOP gained widespread acceptance in the mainstream market through C++.

Bjarne Stroustrup at Bell Labs “integrated object-oriented programming into the C language”

and created C++ (“A Brief History of Object-Oriented Programming,” n.d.). Weisfeld and

others in the field consider C++ to be the most important OOP language because it was the first

to be widely used in the marketplace.

Then in the 1990s, James Gosling at Sun Microsystems worked with features of C++ to

create what eventually became known as Java. With the explosive growth of internet and the

growth of Java as a language for internet applications, OOP language also gained worldwide

popularity. Many other OOP languages have been developed to join the market competition, and

developers now can choose from many OOP languages, such as C#.NET, VB.NET, PHP,

Python, Ruby, etc. A quick google search will yield that almost all programming languages now

have adopted or support OOP concepts, even if the language started out as a procedural language

like COBOL and LISP.

Object-Oriented Programming 8

4. What makes OOP different?

4.1 Procedural Programming vs. OOP

According to Wikipedia, Procedural Programming languages appeared in the 1960s with

Fortran, Algol, COBOL, and BASIC, then in the 1970s with Pascal and C, followed by Ada in

1980. In Procedural Programming, also known as Imperative Programming, programs are

structured in a top-down, step-by-step manner comprised of procedures/functions, routines, and

subroutines. With the Procedural Programming approach, a program is “divided into functions

that perform a specific task. Data is global and all the functions can access the global data

(“Evolution of OOP,” n.d.). The focus of Procedural Programming is on the order of or

procedure of actions to perform specific functions on/with data attributes, while the focus of

Object-Oriented Programming is on organizing specific functions into objects that groups its

own data attributes with functions. In Procedural Programming, since the data is global and all

functions can access it, it is less secure than in OOP where data can be encapsulated and hidden

from unauthorized users. Unlike OOP, Procedural Programming does not have overloading. In

Procedural Programming, editing a program would require the developer to go through every

line in the entire program to edit every single line of code that is related to/with the change. As

Eliason articulated, “as more and more changes may be needed to the code, it becomes

increasingly difficult to locate and edit all related elements in the program” (Eliason, 2017). In

OOP, modularization allows the developer to go to the object class to be changed and find all

related variables and methods grouped together for the change. So, the main differences between

Procedural Programming and OOP approaches involve the focus and structure, data

visibility/access, reusability, and maintenance.

Object-Oriented Programming 9

5. Why does OOP reduce cost and improve software quality?

5.1 Cost Reduction

OOP designs have objects that are modularized into more manageable classes. With

inheritance, multiple subclasses can be created by reusing properties from a superclass, and with

polymorphism, a single action can be performed in multiple different ways with overriding and

overloading (“Polymorphism in Java,” n.d.). So, designs can be reused and recycled, which

saves time and resources, thereby promoting cost reduction in the development of code. Since

OOP classes are divided up into easily understandable bundles, maintenance, particularly in large

program environments, can be much faster, thereby promoting cost reduction in the maintenance

of code, in addition to development.

5.2 Better Software Quality

Encapsulation enables data hiding, which can prevent unauthorized access and secure the

information, leading to better software quality. Hirshfield and Ege (1996) wrote that

encapsulating data and actions together in an object promotes better design and understanding of

a program. Inheritance, basing new classes on existing classes that have already been tested and

debugged, can lead to better software quality also. With reuse and recycle ability in OOP, the

cost and time saved in development can be allocated to testing and verification of software,

which promotes higher software quality (The Saylor Foundation, n.d.). Moreover, OOP objects

are “self-contained, and each bit of functionality does its own thing while leaving the other bits

alone… this modality allows an IT team to work on multiple objects simultaneously while

minimizing the chance that one person might duplicate someone else’s functionality” (Half,

2017). That modularity means testing, trouble-shooting, maintenance and updating is also easier,

and that in turn could lead to better software quality as well.

Object-Oriented Programming 10

6. Concluding Remarks about OOP

Surprisingly, OOP has been around as long as Procedural Programming, but the OOP

momentum for global popularity appears to have been fueled by the growth of Java paired with

the massive expansion of the internet. The difference between OOP and Procedural

Programming approaches increases in significance as the size of the program becomes

larger/longer. OOP languages like Java can produce codes that are Procedural, and if the said

code is simple and short enough, the lack of OOP would scarcely be missed. My personal

experience confirms the common assertion that there is a steep learning curve with OOP, and

since OOP is most suitable and beneficial for large scale programs rather than smaller programs,

I would disagree with the blanket statements claiming that OOP languages are simply better.

Research indicates that Procedural Programming is still widely used, and it would be safe to

conclude this research by stating that even with all the “bells and whistles” and benefits of OOP,

the best programming approach is the one that best meets the needs of a particular project at

hand, and clients/developers would be better served in thoroughly researching all options and

programming paradigms.

Object-Oriented Programming 11

7. References

A Brief History of Object-Oriented Programming. (n.d.). Retrieved December 01, 2017, from

http://web.eecs.utk.edu/~huangj/CS302S04/notes/oo-intro.html

Abstraction (software engineering). (2017, November 01). Retrieved December 07, 2017, from

https://en.wikipedia.org/wiki/Abstraction_(software_engineering)#Abstraction_in_object_o

riented_programming

Deitel, P. J., & Deitel, H. M. (2012). Java how to program (9th ed.). Boston: Pearson.

Eliason, K. (2017, August 17). Difference Between Object Oriented and Procedural

Programming. Retrieved December 01, 2017, from https://neonbrand.com/website-

design/procedural-programming-vs-object-oriented-programming-a-review/

Encapsulation (networking). (2017, September 14). Retrieved December 07, 2017, from

https://en.wikipedia.org/wiki/Encapsulation_(networking)

Evolution of OOP - Step by Step Programming. (n.d.). Retrieved December 01, 2017, from

https://sites.google.com/site/simplestjava/evolution-of-oop

Half, R. (2017, July 13). 4 Advantages of Object-Oriented Programming. Retrieved December

07, 2017, from https://www.roberthalf.com/blog/salaries-and-skills/4-advantages-of-object-

oriented-programming

Hirshfield, S., & Ege, R. (1996, March). Object-oriented programming. ACM Computing

Surveys (CSUR), 28(1), 253-255. Retrieved December 07, 2017, from

https://dl.acm.org/citation.cfm?id=234415

Object-Oriented Programming 12

Nygaard, K. (1986, October). Basic Concepts in Object-Oriented Programming. SIGPLAN

Notices, 21(10), 128-132. Retrieved December 7, 2017, from

https://pdfs.semanticscholar.org/ba2b/e42b631dda8c51d9c90e26755353ce53bab4.pdf

Object-oriented programming. (2017, November 26). Retrieved November 26, 2017, from

https://en.wikipedia.org/wiki/Object-oriented_programming

Polymorphism. (n.d.). Retrieved November 29, 2017, from

https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html

Polymorphism in Java - javatpoint. (n.d.). Retrieved December 07, 2017, from

https://www.javatpoint.com/runtime-polymorphism-in-java

Procedural programming. (2017, November 26). Retrieved December 01, 2017, from

https://en.wikipedia.org/wiki/Procedural_programming

Rouse, M. (2014, June). What is abstraction? - Definition from WhatIs.com. Retrieved

December 07, 2017, from http://whatis.techtarget.com/definition/abstraction

Singh, C. (2017, September 12). Polymorphism in Java with example. Retrieved November 29,

2017, from https://beginnersbook.com/2013/03/polymorphism-in-java/

Stroustrup, B. (Modified 2016, December 21). The C Programming Language. Retrieved

December 01, 2017, from http://www.stroustrup.com/C .html

Stroustrup, B. (1988, May). What is Object-Oriented Programming? IEEE Software, 5(3), 10-20.

Retrieved December 6, 2017, from http://ieeexplore.ieee.org/abstract/document/2020/

Object-Oriented Programming 13

The Saylor Foundation. (n.d.). Advantages and Disadvantages of Object-Oriented Programming

(OOP). Retrieved December 7, 2017, from https://www.saylor.org/site/wp-

content/uploads/2013/02/CS101-2.1.2-AdvantagesDisadvantagesOfOOP-FINAL.pdf

Weisfeld, M. (2005, March 31). The Evolution of Object-Oriented Languages. Retrieved

November 29, 2017, from https://www.developer.com/java/other/article.php/3493761/The-

Evolution-of-Object-Oriented-Languages.htm

What is Abstraction? - Definition from Techopedia. (n.d.). Retrieved December 07, 2017, from

https://www.techopedia.com/definition/3736/abstraction

What is a Procedural Language? - Definition from Techopedia. (n.d.). Retrieved December 07,

2017, from https://www.techopedia.com/definition/8982/procedural-language

Yaiser, M. (2011, October 31). Object-oriented programming concepts: Encapsulation. Retrieved

December 07, 2017, from http://www.adobe.com/devnet/actionscript/learning/oop-

concepts/encapsulation.html

